
50 years of the Institute of High Pressure Physics Polish Academy of Sciences Highlights in III-V semiconductors, THz physics and nanomaterials Anniversary Symposium "Unipress 50"

A puzzle in understanding the discrepancy between theory and experiment in In(Ga)N/GaN short period superlattices

Iza Gorczyca, Grzegorz Staszczak, Tadeusz Suski, Ewa Grzanka, Martin Albrecht (IKZ), and Tobias Schulz (IKZ)

Early attempts to grow Short Period InN/GaN Superlattices

Modern nitride light emitters of visible and UV light are based on Quantum Wells (QWs) and Superlattices (SLs) of (InAlGa)N/GaN. SLs are structures of altenative sequences of quantum wells (QW) and quantum barriers (QB), where band gaps E_g fulfill:

Predicted advantages of nitride Short Period Superlattices

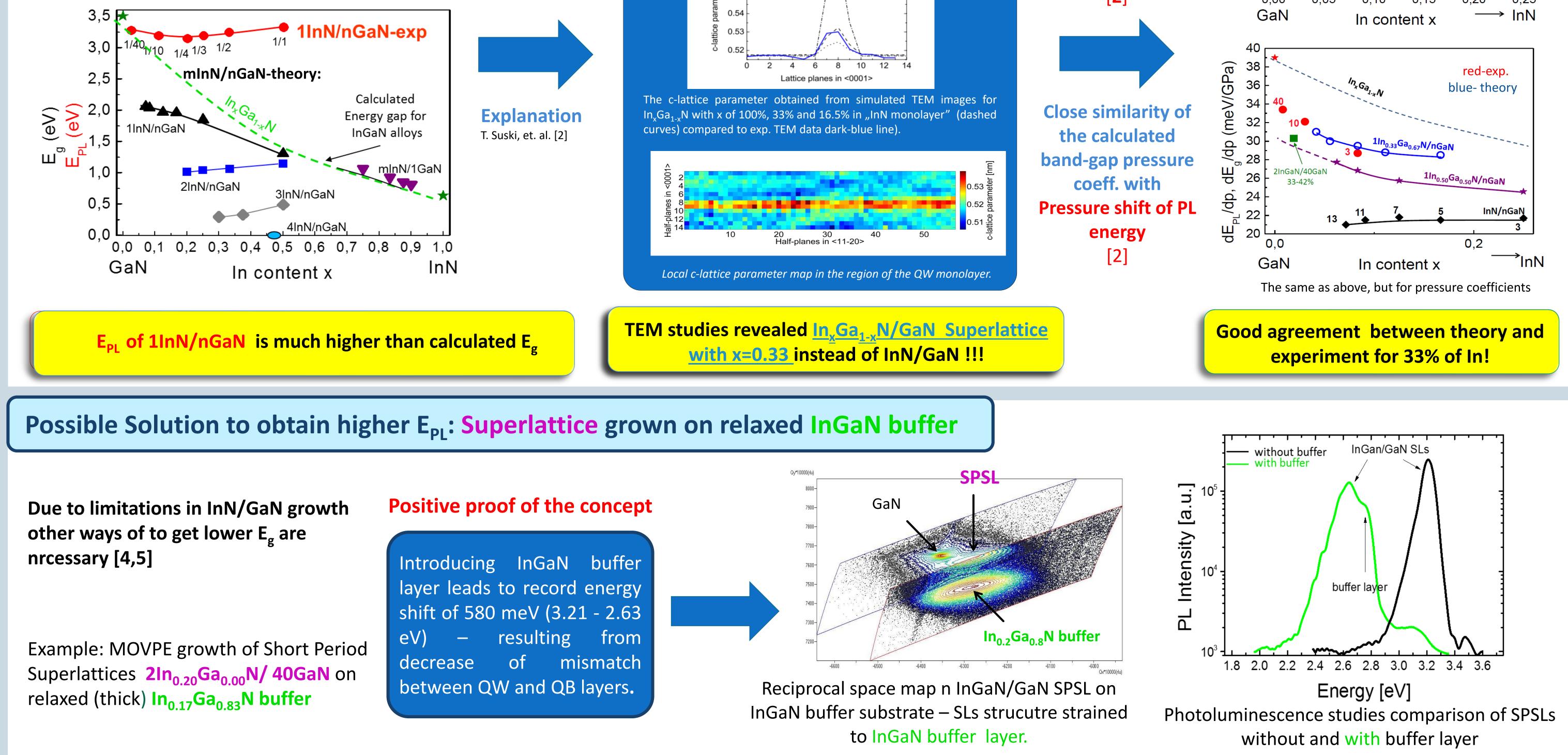
- Precise tuning of the band gap -E_g value (emission wavelength) by changes of the layers numer *m* and *n*. It was predicted that in *m*InN/*n*GaN SPSLs energy gap can change by more than 3eV. Down to 0 eV.
- Band-gap closing.

 $E_g(QW) < E_g(QB);$

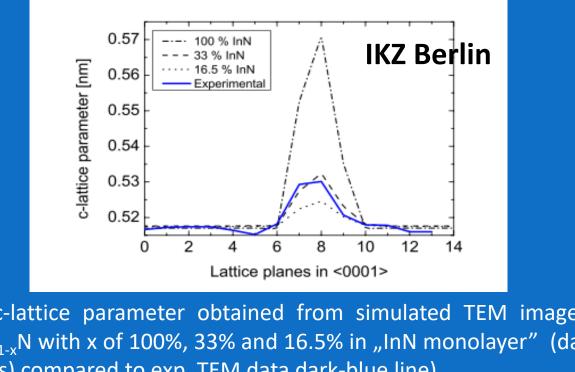
Notation: QW/QB or mQW/nQB, where: m, n = number of atomic monolayers. In InGaN/GaN **Short Period SLs**-*m*, *n* < 7.

Pioneering work of A. Yoshikawa et al. [1] proposed the concept of binary SPSL *mInN/nGaN* with the purpose of avoiding difficulties with growth of $In_xGa_{1-x}N$ with x>0.3 %. This limitation blocked getting devices with wavelength above around 500nm.

There was the common believe that the SPSLs grown accordingly represent a combnation of binary alloys mInN/nGaN


- Substantial reduction in the number of "nonradiative" defects caused by the lattice mismatch
- More uniform band-filling of all QWs of SPSLs compared to "standard" QWs carrier tunneling between QWs through narrow barriers.
- Stable emission wavelength with the increasing the driving current. The related emmiters with narrow QWs and QBs are less sensitive to screening of the built-in electric field [2].

red-exp. blue- theory 3.0 (eV) **Close similarity of** the calculated ш 2,5 band-gap with Щ **PL Energy** of IKZ Berlin 2,0 In_{0.33}Ga_{0.67}N SPSLs 0,00 0,05 0.20 0,25 0.10 GaN → InN In content x (meV/GPa) 10 12 red-exp. Lattice planes in <0001> blue-theory 34 **Close similarity of** the calculated dp/ band-gap pressure 28


Discrepancy between experimental results and theory

Obtained in our Institute experimental and theoretical results as well as results from other research groups showed strong discrepancy between experiment (photoluminescence, E_{PL}) and theoretical calculations of the band gap.

PL energies in InN/GaN SLs - experiment vs. theory

Quantitative high resolution transmission electron microscopy studies of intentionaly grown 1InN/10GaN short-period SPL [3]

Summary

- Our studies found an explanation of dicscepency observed between experiment and theory: instead of intended InN monolayer in QW of SPSI, In_{0.33}Ga_{0.67}N monolayer was grown and examined in variety of previously studied materials.
- Performed theoretical calculationS are in good agreement with In_{0.33}Ga_{0.67}N/GaN SLs case.
- High pressure studies confirm additionally theoretical calculations and HRTEM results.
- Problem of high In-content (higher than 33%) superlattices is still unsolved.
- The idea of using SPSL with QWs matched to thick InGaN "buffer" instead of GaN seems to work well.

[1] A. Yoshikawa et al. Appl. Phys. Lett., <u>90</u>, 073101 (2007). [2] I. Gorczyca et al.. Review paper: [3] T. Suski et al. Appl. Phys. Lett. <u>104</u>, 182103 (2014). [4] A. Duff et al. Phys. Rev. B, <u>89</u> (085307 (2014). [5] M.Siekacz et al. Superlattices and Microstructures, <u>133</u>, 106209 (2019)

